Replacement of the F and G proteins of respiratory syncytial virus (RSV) subgroup A with those of subgroup B generates chimeric live attenuated RSV subgroup B vaccine candidates.
نویسندگان
چکیده
Human respiratory syncytial virus (RSV) exists as two antigenic subgroups, A and B, both of which should be represented in a vaccine. The F and G glycoproteins are the major neutralization and protective antigens, and the G protein in particular is highly divergent between the subgroups. The existing system for reverse genetics is based on the A2 strain of RSV subgroup A, and most efforts to develop a live attenuated RSV vaccine have focused on strain A2 or other subgroup A viruses. In the present study, the development of a live attenuated subgroup B component was expedited by the replacement of the F and G glycoproteins of recombinant A2 virus with their counterparts from the RSV subgroup B strain B1. This gene replacement was initially done for wild-type (wt) recombinant A2 virus to create a wt AB chimeric virus and then for a series of A2 derivatives which contain various combinations of A2-derived attenuating mutations located in genes other than F and G. The wt AB virus replicated in cell culture with an efficiency which was comparable to that of the wt A2 and B1 parents. AB viruses containing temperature-sensitive mutations in the A2 background exhibited levels of temperature sensitivity in vitro which were similar to those of A2 viruses bearing the same mutations. In chimpanzees, the replication of the wt AB chimera was intermediate between that of the A2 and B1 wt viruses and was accompanied by moderate rhinorrhea, as previously seen in this species. An AB chimeric virus, rABcp248/404/1030, which was constructed to contain a mixture of attenuating mutations derived from two different biologically attenuated A2 viruses, was highly attenuated in both the upper and lower respiratory tracts of chimpanzees. This attenuated AB chimeric virus was immunogenic and conferred a high level of resistance on chimpanzees to challenge with wt AB virus. The rABcp248/404/1030 chimeric virus is a promising vaccine candidate for RSV subgroup B and will be evaluated next in humans. Furthermore, these results suggest that additional attenuating mutations derived from strain A2 can be inserted into the A2 background of the recombinant chimeric AB virus as necessary to modify the attenuation phenotype in a reasonably predictable manner to achieve an optimal balance between attenuation and immunogenicity in a virus bearing the subgroup B antigenic determinants.
منابع مشابه
A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats.
UNLABELLED Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we...
متن کاملRespiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant.
A live, cold-passaged (cp) candidate vaccine virus, designated respiratory syncytial virus (RSV) B1 cp-52/2B5 (cp-52), replicated efficiently in Vero cells, but was found to be overattenuated for RSV-seronegative infants and children. Sequence analysis of reverse-transcription-PCR-amplified fragments of this mutant revealed a large deletion spanning most of the coding sequences for the small hy...
متن کاملIdentification of Respiratory Syncytial Virus (RSV) Genome in the Stool of a Child with Acute Gastroenteritis
Case Report: Some viruses have been reported to cause respiratory and gastroenteric infections simultaneously. In this case we present isolation of human respiratory virus (RSV) type B from diarrheal sample of a 12 months' child with acute gastroenteritis. Results: The results indicated the presence of RSV subtype B genome in all three stool samples. Moreover, no sign of co-infections with oth...
متن کاملThe comparative genomics of human respiratory syncytial virus subgroups A and B: genetic variability and molecular evolutionary dynamics.
Genomic variation and related evolutionary dynamics of human respiratory syncytial virus (RSV), a common causative agent of severe lower respiratory tract infections, may affect its transmission behavior. RSV evolutionary patterns are likely to be influenced by a precarious interplay between selection favoring variants with higher replicative fitness and variants that evade host immune response...
متن کاملDiscrimination of respiratory syncytial virus subgroups A and B by reverse transcription-PCR.
Reverse transcription (RT)-PCR with shared primers differentiating respiratory syncytial virus (RSV) subgroups A and B was developed for subtyping of RSV isolates. Results of RT-PCR were compared with those of an indirect immunofluorescence test using monoclonal antibodies. Viral RNA isolated from cell cultures infected with RSV served as a template for cDNA synthesis with random primers. For P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 73 12 شماره
صفحات -
تاریخ انتشار 1999